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Abstract. This paper presents a perturbation method for the solution of the electromagnetic and thermal problems
of a deformed sphere levitated in an alternating magnetic field. The analytical solutions of the electromagnetic
field distribution, the Joule heat generation, the magnetic lifting force and the temperature field are obtained based
on a linear perturbation theory. The Maxwell equations are first simplified in terms of the vector potential and then
solved by the method of separation of variables. The time-averaged Joule-heat source is calculated and coupled
to the Fourier heat-conduction equation. The coupled equation is solved for temperature distributions within the
deformed sphere by a combined approach of series expansion and variation of parameters. Both asymptotic and
numerical analyses are provided. The total power absorption and temperature field for both single and multiple
coils are also discussed.
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I. Introduction

Magnetic levitation is a major process for achieving a containerless environment for the
purpose of metal refining or purification. The basic idea for magnetic levitation may be briefly
described as follows. When an electrically conducting sample, such as metal, is placed in
an alternating magnetic field, currents will be induced in the sample. These induced currents
will generate a magnetic field which will impress upon the applied magnetic field. The
induced currents interact with the total (i.e., the imposed and the induced) magnetic field to
produce electromagnetic forces in the sample. If the applied current is strong enough, the
electromagnetic forces can counterbalance the gravitational force to levitate the sample in
space. Also, the induced currents will interact with themselves to generate a Joule-heating
effect which heats up or eventually melts the sample being levitated. A distinct advantage
of the process is that levitation creates a containerless environment and prevents the sample
from being contaminated by any container-related impurities, thereby providing a unique
way to obtain extra high-purity materials. Recent research work suggests [1–3] that aside
from advantages of containerless purification, the magnetic-levitation technique also can be
applied to achieve a significant amount of undercooling, measured by the difference between
the actual temperature and the melting point of a melt, which would otherwise be difficult
to accomplish by the container-based technology. The process is also being explored as a
means for directly measuring the thermal and physical properties of conducting materials and
undercooled melts.

Because of these unique advantages, magnetic levitation has received a great deal of
attention within the research community. Okress, et al. [4] are perhaps the first to have
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started laboratory research on the subject. Recent work has been on developing a better
understanding of both the electrodynamic and transport phenomena occurring in the magnetic-
levitation process [5–13]. Analytical studies published so far have been concerned with the
behavior of a perfect sphere, primarily because sphericity offers a simple and solvable system.
These solutions represent basically zero-order approximations, since in reality a sample under
levitation is in the molten stage and cannot remain spherical. For these molten droplets, the
final equilibrium free-surface shape is determined by a detailed balance of surface tension,
electromagnetic forces, gravitational forces and hydrodynamic forces along the surface, and
numerical algorithms have been well established for the purpose [9, 10]. There has been
much interest in obtaining information on the temperature distribution in a deformed sample
levitated in an electromagnetic magnetic field. Such information is of critical value in designing
a magnetic-levitation system as well as in interpreting experimental measurements taken from
a sample levitated magnetically. Despite this importance, analyses of thermal behavior of a
molten droplet levitated magnetically do not appear to have been carried out.

In this paper, we present a perturbational approach to the magnetothermal problems related
to an aspherical sample which is levitated magnetically. We will consider a slightly deformed
sphere with axial symmetry and solve for the electromagnetic-field distribution, the Joule
heating, and temperature distribution in magnetic-levitation processes. The electromagnetic
field induced in the spheroid is obtained analytically via the magnetic vector potential by a
perturbation method up to linear-order accuracy. The Joule heating is derived from the known
induced current-density distribution. The heating contributes to the temperature distribution in
the sample as a source term. The solution of the temperature distribution will also be obtained
analytically, again by a perturbation method, up to linear accuracy. These solutions are present-
ed first for a single coil configuration, which offers an ideal system for analytical approaches.
The extension of the solutions to treat a multiple-coil configuration is also discussed. With the
derived formulae, the time-averaged power absorption, an important quantity characterizing
the thermal aspects of a levitation system, is discussed. Some asymptotic analyses, based on
the perturbational solutions, are also presented and numerical results are given.

Some necessary assumptions and simplifications have been made to render the problem
analytically workable. First, we have assumed that the sample suspended in the magnetic
field satisfies suitable stability conditions and thus oscillations or rotation with respect to the
vertical axis do not occur; this is the prerequisite for the system to be of axial symmetry. We
have relaxed the previous requirement of perfect sphericity for the sample, but will attach
the condition that the deformation is small and is within the realm of perturbation analyses.
This assumption is thought to be reasonable for a levitation system in which a sample is
only slightly deformed by carefully arranged coil configurations. In seeking the solution of
the temperature field, we have assumed that heat transfer in the sphere is by conduction.
This assumption can be true for a sample started with an imperfect spherical shape and
heated before it gets melted; but it can be a severe assumption, especially when a steady-state
temperature distribution is sought for the liquid sphere, as in reality thermal convection also
takes place in the liquid sample and helps to even the temperature difference. Because of this,
the predicted thermal field is only partially correct for a levitated liquid sample. Nonetheless,
our perturbational solutions, which are possible with these necessary assumptions, should be
of fundamental value in assessing the magnetothermal behavior of a levitation system, and
also provide useful guidelines for magnetic-levitation process design and development.
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Figure 1. Schematic representation of a magnetic-levitation system. The spherical coordinates used in the analyses
are also shown.

II. Problem formulation

Consider the axisymmetric system to be investigated as illustrated in Figure 1. In practice,
two types of coils are used: one for the purpose of levitation and the other for heating. The
levitation coils are so designed and placed that the specimen can be levitated without proneness
to instability: any perturbation from the equilibrium position will be damped away. Usually,
these coils provide the thermal energy needed to keep the sample slightly above the melting
point after the process reaches its steady state. The heating coils, on the other hand, are used
primarily to heat and melt the sample, for the purpose of which a higher current with a higher
frequency is used. The whole levitation system is normally sealed in a vacuum vessel, or
immersed in an inert gas, such as helium, environment, to prevent the sample from oxidizing
at high temperatures. To understand the magnetothermal phenomena involved in the process,
the electromagnetic field and its interaction with the temperature field must be resolved.

(a) The electromagnetic field
Our theoretical analysis of the above system starts with the electromagnetic field, which,

in general, is described by the Maxwell equations [14,15]

r � D = �e; (1)

r� E +
@B
@t

= 0; (2)

r � B = 0; (3)

r�H = J +
@D
@t

; (4)

where �e is the free-charge density, D the displacement current, E the electric field, B the
magnetic field, H the magnetic intensity and J the current density.
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Clearly a direct solution of these equations would be a formidable task and yet some
simplifications may be made so as to facilitate a solution for our particular system. For normal
levitation conditions, the quasi-steady state or near-field approximations are quite valid. As
the frequency used in the levitation device is relatively low compared with the mean collision
frequency of electron gas in the metal, there will be no electric charge separation and hence the
alteration in conductivity may well be neglected. Also, as the levitation apparatus is normally
much smaller than the electromagnetic wave length generated by the applied current, the
displacement current can be safely ignored [14]. For a sinusoidal field like the present one,
the field quantities may be conveniently represented in phasor notation. For example, the
magnetic induction may be separated into two parts and written in the form of

B = B̂ej!t; (5)

with B̂(r) being a complex-variable amplitude having only spatial dependence,! the angular
frequency of the imposed field and j =

p
�1. Other field quantities may be written similarly.

Incorporating these simplifications, then making use of the magnetic vector potential, defined
as,

B = r� A; (6)

and finally with some vector manipulations, we can simplify the Maxwell equations and
express the result in terms of the magnetic vector potential, viz.,

r2Â� j!��Â = 0; (7)

where we have made use of the Coulomb gauge [14, 15], and � and � are the electrical
conductivity and magnetic permeability, respectively.

The condition that the system under consideration possesses axisymmetry requires that
the r- and �- components of the magnetic vector potential be identically zero. Thus, only the
azimuthal component of the magnetic vector potential, A�, survives. We can then write the
governing equation for the magnetic field in the levitation system in terms of A�,

1
r2

@

@r

�
r2 @A�

@r

�
+

1
r2 sin �

@

@�

�
sin �

@A�

@�

�
� A�

r2 sin2 �
= k2A�; (8)

where k is a parameter for the levitation system,

k2 = j!��: (9)

For the sake of brevity, we have dropped the caret on A� in Equation (2.14) and will henceforth
do the same for the electromagnetic-field quantities, unless otherwise indicated. It is noted
here that the above equation applies to both inside and outside the conducting sphere. When
applied to the outside, it becomes homogeneous as k reduces to zero.

The boundary conditions are that the tangential magnetic field and the normal magnetic
field, involving no magnetization, must be continuous along the interface between the air and
the sphere, so as to give rise to the following relationships on the surface of the deformed
sphere [15,16]:

A�i = A�0; r 2 @
; (10)

@A�i

@n
=

@A�0

@n
; r 2 @
; (11)
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where the subscripts refer to the inside and outside fields, respectively.

(b) The temperature field
For the conducting sample, the heating results primarily from the Joule effect. The final

temperature distribution within the sample is a combined result of Joule heating and heat
loss to the environment. When the Joule heating is balanced by the heat loss, a steady-state
condition occurs. In this paper, we consider the steady state only. Within the framework of
the assumptions given in Section I, the energy-balance equation for the steady-state condition
may be written thus [17],

1
r2

@

@r

�
r2 @T

@r

�
+

1
r2 sin �

@

@�

�
sin �

@T

@�

�
+
Q(r; �)

K
= 0; (12)

where T is the temperature, Q the Joule-heating source, and K the thermal conductivity.
Clearly, the Joule-heating term represents the coupling between the electromagnetic and
temperature fields.

The cooling of the sample in a levitation system is either from radiation to the chamber
walls or from the convective loss to the inert gas (He or Ar) or both. To simplify the nonlinear
effects associated with these boundary conditions, the cooling is assumed to follow the linear
convective law on the deformed surface,

�K @T

@n
= He� T; (13)

where He� is the effective heat-transfer coefficient and the temperature is measured from
T1 = 298, which is the environment temperature. In writing the above equation, we have
assumed that the levitation system is being operated under vacuum and thus the heat loss to
the environment comes primarily from thermal radiation. For a sample immersed in a stream
of He gas, an additional convective coefficient would have to be added. For either case, He�

is assumed to be constant and is calculated as an averaged value [11].

III. The perturbation method

We seek a solution to the above equations describing the electrodynamic and thermal phe-
nomena in a deformed sphere via a regular perturbational approach [18]. By this method, for a
deformed sphere whose boundary is prescribed by a series expansion around the corresponding
sphere

r = a

 
1 + "

X
i=1

f i(cos �)

!
; (14)

the solution of a field variable may be expanded in terms of the regular boundary perturbation
parameter, ", or specifically,

u(r; ") = u0(r) + "u1(r) + "2u2(r) + � � � ; (15)

where a is the radius of the sphere and the terms associated with " represent higher-order
approximations.
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As the boundary is irregular, the field variable of any order must be expanded in the
boundary perturbational form. For a slight departure from a sphere of radius a, the field
variables of any order approximation may be expanded as a Taylor series around a,

ui(r; ") = ui(a) +
X
j=1

(r � a)j

j!
@jui(r)

@rj

����
r=a

; r 2 @
: (16)

Since r � a = a"
P

i=1 f
i(�) on @
, the above equation then takes the form of

ui(r; ") = ui(a) +
X
j=1

"jaj(
P

m=1 f
m
(�))

j

j!
@jui(r)

@rj

����
r=a

; r 2 @
: (17)

Similarly, the nth-order derivative of the field variables of any order approximation can be
expanded in a Taylor series around a sphere of radius a along the boundary,

@nui(r; ")

@rn
=

@nui

@rn

����
r=a

+
X
j=1

"jaj(
P

m=1 f
m
(�))

j

j!
@j+nui(r)

@rj+n

����
r=a

; r 2 @
: (18)

To obtain the perturbational form of the boundary conditions involving normal derivatives,
we further need an expansion for the normal derivatives to the deformed surface,
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+
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r=a
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2
641 +

0
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1 + "
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j(cos �)

�
1
A

2
3
75
�1=2

(19)

�

2
64@u
@r

�
"
P

j=1 df j(cos �)=d�

a
�

1 + "
P

j=1 f
j(cos �)

�2

@u

@�

3
75

� @u

@r
� "

a

X
j=1

df j(cos �)
d�

@u

@�
; r 2 @
:

The above approximation for the normal derivative is accurate up to the order of ". It is also
obvious that, if u and @u=@n are both continuous at r 2 @
, then @u=@r is continuous across
the surface of the deformed sphere.

In theory the above method can be applied to obtain the perturbational approximations
of any order in the same fashion. In practice, however, calculations are very complex when
second-order or higher approximations are considered. Thus, we will obtain the perturbational
solutions only up to linear order. To simplify our analyses, we further assume that the deformed
surface of the sphere is described by the following function

r(�) = a(1 + "P2(cos �)) (20)

on the basis of which the above boundary perturbation terms can be simplified and our
perturbation solutions of the electromagnetic field and temperature distribution within the
levitated sample will be obtained.
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IV. The solution of the electromagnetic field

In accordance with linear perturbation, the magnetic vector potential that is sought will assume
the following form,

A� = A0
� + "A1

�: (21)

Substituting this in Equation (8) and collecting terms of the same order, we obtain the following
two equations for the vector potential,

"0 :
1
r2

@

@r

 
r2 @A

0
�

@r

!
+

1
r2 sin �

@

@�

 
sin �

@A0
�

@�

!
�

A0
�

r2 sin2 �
= k2A0

�; (22)

"1 :
1
r2

@

@r

 
r2 @A

1
�

@r

!
+

1
r2 sin �

@

@�

 
sin �

@A1
�

@�

!
�

A1
�

r2 sin2 �
= k2A1

�; (23)

Applying the boundary perturbation expansions as described in the last section, subject to
the necessary simplifications resulting from the boundary shape prescribed by Equation (14),
we have up to the second order,

A� = A0
�jr=a + a"P2(cos �)

@A0
�

@r

����
r=a

+"A1
�jr=a + a"2P2(cos �)

@A1
�

@r

����
r=a

: (24)

If we substitute this in Equation (10), we find two conditions, each corresponding to its specific
order,

"0 : A0
�i
jr=a = A0

�0
jr=a; (25)

"1 : A1
�i
jr=a = A1

�0
jr=a: (26)

Clearly, the condition that the vector potential is continuous across the boundary remains true
up to linear order.

Similarly, we may apply Equations(17), (18), (22) and (23) to derive the boundary con-
ditions governing the normal derivatives of the first and second orders across the interface
between the sphere and the environment. Applying some algebra, we may show that

"0 :
@A0

�i

@r
=

@A0
�0

@r

����
r=a

; (27)

"1 :
@A1

�i

@r

����
r=a

=
@A1

�0

@r

����
r=a

�aP2(cos �)k2A0
�i : (28)

The first boundary condition represents the continuity of the normal derivative across the
boundary for a perfect sphere, which is consistent with the expression given in Equation (11).
The boundary condition for the linear terms shows that continuity cannot be maintained at
higher orders. The normal derivatives change across the boundary, as indicated by the second
term on the right-hand side of the equation, which represents the contribution of the zero-order
terms.

It is noted here that in arriving at Equation (26) we already made use of Equation (27).
Also, in Equation(28), the last term which represents the effect of the zero-order solution,
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takes a remarkably simple form for this particular problem. In general, it would involve the
higher-order derivative of the zero-order solution.

The set of Equations (22), (25) and (27) represents the zero-order approximation or solu-
tion for a perfect sphere. The solution was obtained by Li [11] and is re-written below for
convenience,

A
0
�i =

�I sin�
2

�
a

r

�1=2
1X
n=1

2n+ 1
n(n+ 1)

�
a

r0

�n P
1
n(cos�)P 1

n(cos �)In+1=2(kr)

kaIn�1=2(ka)
; r 6 a;

A
0
�0 =

�I sin�
2

1X
n=1

P
1
n(cos�)P 1

n(cos �)
n(n+ 1)

�
r0r

n
<

r
n+1
>

�
In+3=2(ka)

In�1=2(ka)

�
a

r

�n+1 � a

r0

�n�
; r > a;

9>>>>=
>>>>;

(29)

where P 1
n(x) is the Legendre function, and In+1=2(x) the modified Bessel function of the first

kind and r<(r>) is the smaller (larger) of ro and r.
Equation (23), along with the boundary conditions expressed by Equations (26) and (28),

constitutes the linear-order approximation and is now solved. The equation set is separable and
we will take the same approach as detailed in [11]. By that approach, we first treat the whole
space as if it were a homogeneous medium with the origin of the coordinate system located
at the center of the sphere. The solution is then simplified by setting the system parameter k
equal to zero for the outside of the deformed sphere. Thus, the solution for both the outside
and inside of the sphere, after separation of variables [19], has the following form,

A1
�i =

1X
n=1

Cnr
�1=2In+1=2(kr)P

1
n(cos �); (30)

A1
�0 =

1X
n=1

Cnr
�1=2Kn+1=2(kr)P

1
n(cos �): (31)

In a normal levitation operation, the environment is either a vacuum or air and thus the
conductivity is virtually zero. Making use of the asymptotic behavior of the modified Bessel
functions of the second kind as the argument of the function, x, tends to zero [20],

Kn+1=2(x) =

8>>><
>>>:
�
�
log
�
x

2

�
+ 0:5772 � � �

�
; n = �1=2;

�(n+ 1=2)
2

�
2
x

�n+1=2

; n 6= �1=2;

(32)

we can show that Equation (31) reduces to

A1
�0 =

1X
n=1

DnP
1
n(cos �)=rn+1; (33)

which could have been obtained from Equation (23) directly by the method of separation of
variables, when k is set equal to zero. It is remarked here that the use of Equations (30) and
(31) represents a unified approach and is more convenient, as both the outside and inside
solutions can be readily deduced from a single separation-of-variables procedure.

The constants C1
n and D1

n in Equations (30) and (33) can now be determined from the two
first-order boundary conditions. Substituting Equations (30) and (33) in Equations (26) and
(28), respectively, we have

C1
nIn+1=2(ka)a

�1=2 = D1
na

�n�1; (34)
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C1
nIn�1=2(ka)P

1
n(cos �)

a1=2
= �P2(cos �)

�I sin�
2

2n+ 1
n(n+ 1)

�
�
a

r0

�n P 1
n(cos�)P 1

n(cos �)In+1=2(ka)

In�1=2(ka)
: (35)

To obtain the expression for C1
n, the right-hand side must also be expanded in the form

of Legendre functions. While the normal procedures may be followed to get the expansion
series, a more simplified approach would be to use the recursive relationship between the
Legendre functions of different orders. For associated Legendre functions of varying degrees,
we have the following recurrence relation [20]:

(n�m+ 1)Pm
n+1(x)� (2n+ 1)xPm

n (x) + (n+m)Pm
n�1 = 0: (36)

Also, with the definition ofP2(cos �) = 1
2(3 cos2 �� 1) and by repeated use of Equation (46),

one can get the following expression for the expansion of P2(cos �)P 1
n(cos �) in terms of

P 1
n(cos �),

P2(cos �)P 1
n(cos �) =

3
2

cos2 �P 1
n(cos �)� 1

2
P 1
n(cos �)

=
3n(n+ 1)

2(2n+ 1)(2n+ 3)
P 1
n+2(cos �) +

n2 + n� 3
(2n+ 3)(2n� 1)

P 1
n(cos �)

+
3n(n+ 1)

2(2n+ 1)(2n� 1)
P 1
n�2(cos �) : (37)

Using this relation, we can obtain C1
n and D1

n. Combining with the zero-order solution, we
have the perturbational form of the vector potential with a linear accuracy in " for both the
inside and outside of the sphere, viz.,

A�i = A0
�i + "A1

�i

=
�I sin�

2

�
a

r

�1=2 1X
n=1

P 1
n(cos �)In+1=2(kr)

In�1=2(ka)

(
2n+1
n(n+1)

P 1
n(cos�)
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�
a

r0

�n
+"En

)
;

(38)

A�0 = A0
�0 + "A1
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=
�I sin�

2

1X
n=1

P 1
n(cos �)

"
P 1
n(cos�)
n(n+ 1)

 
r0r

n
<

rn+1
>

� In+3=2(ka)

In�1=2(ka)

�
a

r

�n+1 � a

r0

�n!

+"En

In+1=2(ka)

In�1=2(ka)

�
a

r

�n+1
#
; (39)

where the coefficient En is evaluated according to

En +Bn�2
3(n� 1)(n� 2)

2(2n� 1)(2n� 3)
+Bn

n2 + n� 3
(2n+ 3)(2n� 1)

+Bn+2
3(n+ 2)(n+ 3)

2(2n+ 5)(2n+ 3)
;

(40)



346 X. Zhang et al.

with Bn defined by

Bn = � 2n+ 1
n(n+ 1)

P 1
n(cos�)

�
a

r0

�n In+1=2(ka)

In�1=2(ka)
:

With the vector potential known, we may calculate other electromagnetic-field variables.
One of the quantities which are of direct interest, given the objective of this paper, is the
time-averaged Joule heating within the deformed sphere, and may be calculated as follows:

Q(r; �) = lim
T!1

1
T

Z T

0

Re(Jej!t) � Re(Jej!t)
�

dt
(41)

=
J0
� � J0�

�

2�
+

"

�
Re(J0

� � J1�
� ) ;

where J� = �j!�A�i is the induced eddy-current density and also the Joule-heating source
has been linearized with respect to " so as to be consistent with the linear-order analyses.

V. The solution of the temperature field

The procedure for the perturbation solution of the temperature field is similar. For the linear
approximation considered here, the temperature distribution takes the following form,

T (r; ") + T1(r) + "T 1(r) : (42)

Upon substitution in Equation (12) and rearranging, we can write the equations describing
the zero and first-order approximations for the temperature-field distribution in the deformed
sphere explicitly as follows:
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1
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+
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sin �
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@�

!
+
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�

2�K
= 0 ; (43)
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!
+

Re(J0
� � J1�

� )

�K
= 0 : (44)

The convective boundary conditions of the corresponding order can also be obtained when
we follow the same boundary perturbation procedure, whence we have,

@T

@n
+ hT =

@T

@r
+
"

a
P 1

2 (cos �)
@T

@�
+ hT = 0 : (45)

Therefore, we have for the zeroth and first-order conditions,

"0 :
@T 0

@r
+ hT 0 = 0 ; (46)

"1 :
@T 1

@r
+ hT 1 = �aP2(cos �)

 
@2T 0

@r2 + h
@T 0

@r

!
� P 1

2 (cos �)
a

@T 0

@�
; (47)

where h = He� =K . Note here that the temperature field does not have the fortunate property
of the electromagnetic field and the higher derivatives must be spelt out by following through
the straightforward, yet laborious derivations.
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As with the magnetic vector potential, the zero-order solution for the problem, as defined
by Equations (43) and (46), has already been obtained before [11, 21],

T 0(r; �) =
�!I2 sin2 �

16K

1X
l=0

1X
m=1

1X
n=1

2m+ 1
m(m+ 1)

2n+ 1
n(n+ 1)
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�n+m
(48)

P 1
m(cos�)P 1

n(cos�)Pl(cos �)Ilmn(r)Plmn :

In the above equation, Plmn is an integral of a triple product of associated Legendre functions
of mixed order and was evaluated elsewhere [11],

Plmn =

Z 1

0
Pl(�)P

1
m(�)P

1
n(�) d�

=
1
2
(�l(l + 1) +m(m+ 1) + n(n+ 1))

Z 1
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Pl(�)Pm(�)Pn(�) d�

(49)

= (�l(l + 1) +m(m+ 1) + n(n+ 1))
(2s)!!

(2s+ 1)!!

�(2(s� l)� 1)!!(2(s�m)� 1)!!(2(s� n)� 1)!!
(2(s� l))!!(2(s�m))!!(2(s � n)!!

;

2s = l +m+ n = Even; l > 0; 0 6 m� l 6 n 6 m+ l

and Ilmn(r) is a function of r
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"Z r
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0)] dr0 +

Z a

r

�
r
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(50)

+

�
r

a

�l (l + 1� ha)

(ha+ l)

Z a

0

�
r0

a

�l+1

Re[Rmn(r
0)] dr0

#
;

where Rmn(r) involves a product of modified Bessel functions of different orders

Rmn(r) =
Im+1=2(kr)

Im�1=2(ka)

In+1=2(k
�r)

In�1=2(k
�a)

: (51)

We now consider the solution of the linear order for the set of Equations (44) and (47).
Inspection of the equation set indicates that the solution is separable,

T (r; �) =
X
l=0

Rl(r)Pl(cos �) : (52)

To facilitate the solution, we also expand the Joule-heating source term in terms of Legendre
functions

Re(J0
� � J1�

� )

�K
=

�!I2 sin2 �

16K

�
1
r

� 1X
l=0

(2l + 1)Pl(cos �)
1X

m=1

1X
n=1

Flmn(r) ; (53)

where Flmn(r) is a function of r

Flmn(r) = PlmnP
1
m(cos�)

4(2m+ 1)
m(m+ 1)

�
a

r0

�m
Re[k�E�nRmn(r)] : (54)
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Upon substituting the above two equations in Equation (44) and rearranging, we have an
inhomogeneous ordinary differential equation for R(r)

d2Rl(r)

dr2 +
2
r

dRl(r)

dr
� l(l + 1)

r2 Rl(r) +
�!I2 sin2 �

16K

1X
m=1

1X
n=1

(2l + 1)Flmn(r)

r
= 0 :

(55)

Equation (55) may be solved readily along with Equation (47). After some algebraic manip-
ulations, we have the first-order approximation to the temperature distribution

T 1(r; �) =
�!I2 sin2 �

16K
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: (56)

In the above equation glmn is a constant defined as

glmn = fa2[S1l�2P(l�2)mnD(l�2)mn + S2lPlmnDlmn + S3l+2P(l+2)mnD(l+2)mn]

+[T1l�2P(l�2)mnI(l�2)mn(a) + T2lPlmnI(l�2)mn(a) (57)

+S3l+2P(l+2)mnI(l+2)mn(a)]g ;

where

S1l =
3(l + 1)(l + 2)

2(2l + 1)(2l + 3)
; S2l =

l(l + 1)
(2l � 1)(2l + 3)

; S3l =
3l(l � 1)
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(2l + 1)(2l + 3)

; T2l =
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�
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0

�
r0

a

�
Re[Rmn(r

0=a)] d(r0=a) � (2l + 1) Re[Rmn(a)] :

The final temperature solution thus is a linear combination of the zeroth and linear order
approximations.

VI. Results and discussion

The above formulae may be used to derive some useful quantities for the magnetic levitation
of the deformed sphere. Of particular importance to the thermal aspects of the levitation
system is the total power absorbed by the sphere, which may be obtained when we integrate
the analytical solutions.

(a) Total power absorption
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The power absorption represents the total heat generated within the conducting body and
we may calculate this by integrating the distributed Joule-heating over the entire deformed
sphere,

Qtot =

Z



lim
T!1

1
T

Z T

0

Re(Jej!t) � Re(Jej!t)
�

dtd
 ;

(58)

=

Z
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+

"
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Re(J0

� � J1�
� )

#
d
 :

In line with linear perturbation theory, we can also split Equation (58) into two terms, one
involving a double integral and the other a single integral,

Qtot = 2�
Z 1

�1

Z a+a"P2(cos �)

0
Q0(r; cos �)r2 dr d cos �

+"2�
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Z 1
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P2(cos �)Q0(a; cos �) d cos � :

Substituting the expressions for J0
� and J1

� in the first term of the above equation we arrive at
a complex triple summation,
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�Z 1
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Pl(x) dx

The integrals can be evaluated analytically. First, we simplify the triple summation to a single
summation by making use of the following orthogonality property of Legendre functions,

Z 1

�1
Pl(x) dx =

�
0; l > 0
2; l = 0

: (61)

Using this,we may further simplify the coefficient Plmn as follows:

P(l=0)mn =

Z 1

�1
P 1
m(x)P

1
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1
2
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Z 1
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=
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We can now evaluate the integral involving Rmn(r) analytically by noticing [24] thatZ a

0
rIn+1=2(kr)In�1=2(k

�r) dr =
(63)
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2!��
:

With these ingredients, the two integrals in Equation (60) can be evaluated,
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The single integral term in Equation (59) can also be integrated analytically. With J0
�

substituted, we can write the integral explicitly as
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From the orthogonality property of Legendre functions, only the term of l = 2 survives in the
summation of l. The double integral can be simplified further if we make use of the following
property of the coefficient Plmn
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Thus, we evaluate the single integral term analytically with the following result,
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where
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The combination of Equations (64) and (68) gives the final expression for the power absorption
in the deformed sphere immersed in the magnetic field generated by a single coil,

Qtot =
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!)
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Obviously, with " set to zero, the above equation reduces to the total power absorption for a
sphere of radius a, as has been obtained previously [11].

(b) Asymptotic behavior
One of the advantages of the application of analytical methods is that the solutions may

be manipulated to examine the asymptotic behavior of the system under consideration. For
levitation of metals under normal conditions, the system parameter k is large. In the limit of
k !1, the Bessel function behaves, asymptotically, as follows: In+1=2(x) ! ex=

p
z. With

this, the current density may be shown to be concentrated near the surface region and behave
exponentially decaying inward

J� ! e�(a�r)=� ; (70)

where � =
p

2=�!� is the skin depth. This is as expected from the general theory of
electrodynamics [14].

With the same limit, we can show that the total power absorbed by the aspherical sample
is estimated by

Qtot / I2(b0 + b1"a Re(k))
r
�!

�
; (71)

where bo and b are two constants independent of ". If the aspherical deformation is sufficiently
small or j"akj � 1, the major contribution will come from the zero-order term. Clearly, the
total Joule-heat absorption is proportional to the square of the applied current. Its dependency
on other parameters can be a complex function, unless j"akj � 1.

The asymptotic form of the temperature solution will be difficult to assess, except for
an obvious statement resulting from Equation (56) that the local temperature is proportional
to the square of the applied current and inversely proportional to the thermal conductivity.
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Figure 2. Comparison of radial temperature distributions in perfect and deformed spheres. The numbers in the
legend refer to the � angle.

However, a thermal balance involving only the averaged temperature in the deformed sphere
will show an asymptotic behavior very similar to the total heat absorption, as k !1.

(c) Some numerical results
The formulae derived in the previous section can also be used to obtain a detailed description

of the temperature field in an aspherical sample. The special functions involved in the solution
can be calculated from the expressions given by Abramowitz and Stegun [20]. While it is a very
complicated and lengthy series expression, the solution actually converges rapidly, and five or
six terms, more specifically, l;m; n = 1; 2; . . . ; 5, will normally suffice to give an accuracy of
10�5. Detailed calculations also show that the first term contributes most significantly, and the
contribution of other terms diminish rather quickly. For the results presented below, six terms
were used and the results are accurate up to 5 digits after the decimal point. These calculations
were done for a liquid aluminum drop (a=6mm) immersed in a single exciting coil located
at the equator plane at a frequency of 1:45 � 10�5Hz and I = 212A. Other thermophysical
data for the calculations are the same as those we used earlier [11]. This coil design has been
considered for magnetic levitation experiments in microgravity [10].

Figure 2 shows the calculated results for the temperature distribution in a deformed sample
along the r-direction, but cut at different �-angles. Apparently, the temperature distribution
along the radius changes as a function of �. At � = 90�, the temperature at the center is
at a minimum and increases as the sample surface is approached. There exists a maximum
temperature close to but not on the surface, which is attributed to the requirement that the
Newtonian cooling law must be satisfied. The temperature distribution along the radius at



A perturbational approach to magneto-thermal problems 353

Figure 3. Comparison of temperature distributions on the surfaces of perfect and deformed spheres. Because of
symmetry only the upper half is plotted.

� = 00 looks different, in that the temperature decays monotonically from the center to the
surface of the sample. The thermal behavior of the sample along the radius is more or less
intermediate between that of these two extremes when the angle changes from 0 to 90�, as
examplified by the results indicated by � = 40� also shown in the figure. As expected, this
temperature distribution is such that strong Joule heating will exist near the equator, where
the surface is nearest to the coil and heating decreases very quickly, both in the inward radial
direction and away from the equator plane. The general behavior is very similar to that for a
perfect sphere, except that the magnitude is different [11]. This decrease in Joule heating will
result in a lower temperature in regions not close to the surface.

The temperature distribution on the surface of the deformed sample is compared in Figure 3
for perfect and deformed spheres. It is seen that the detailed temperature distribution along the
surface is very similar, but the magnitude is different. In fact, as the sphere deforms away from
the coil by 1% (i.e. " = 0:01), the temperature decreases by about 10 degrees, in comparison
with that for a perfect sphere. It is noted that for the results shown here, the magnitude of
the temperature drop is proportional to the asphericity parameter, ". Additional numerical
computations were also made and results showed that for a 5% deformation, or " = 0:05,
the maximum temperature drops by about 7% [21]; however, the general distribution of the
temperature distribution is almost the same as for a perfect sphere. These calculations seem to
suggest that the temperature difference resulting from asphericity is approximately determined
by " when the deformation is small.

(d) Extension to multiple coils
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In practice, a levitation system uses many coils arranged such that a stable levitation
condition can be maintained. The solution presented above for a single-coil system can be
readily extended to obtain the solutions for multiple-coil levitation configurations. Because of
the linearity of the Maxwell equations, the eddy-current density and the magnetic field, within
the deformed sphere induced by a coil configuration consisting of N induction coils with the
same frequency and currents, can be obtained by combining the contributions from each coil,

J� = J�1 + J�2 + J�3 + � � �+ J�N : (72)

The time-averaged power absorption by the aspherical sample in a levitation system
consisting of N current loops can then be calculated by the same procedure as we described
above
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where the subscript j on Hn;j means that r0j and �j should be used to compute Qtot.
The temperature solution can also be obtained. The procedure should be straightforward.

For the same multiple-coil configuration considered, we can show that the temperature distri-
bution with a linear accuracy is given by
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where Flmnij(r) is a function of �i and �j and is calculated by

Flmnij(r) = PlmnP
1
m(cos�i)

4(2m+ 1)
m(m+ 1)

�
a

r0

�m
Re[k�E�n;jRmn(r)] : (75)

Acknowledgment

Support for this work by the Louisiana Education Quality Support Funds through LaSPACE
under agreement NASA/LSU (1991–1996)– 01 and NASA Grant NGT–40039 is gratefully
acknowledged. The assistance in the plotting of the results by Dr. Y. Peng and Mr. S. P. Song
is also acknowledged.



A perturbational approach to magneto-thermal problems 355

References

1. U. Essmann and H. Kiessig, Preparation of metals in ultra high vacuum by electromagnetic levitation.
Materials Research Bulletin 14 (1979) 1139–1145.

2. M. B. Robinson, R. J. Bayuzick and W. H. Hofmeister, Undercooling studies of Nb-Pt and Nb-Si alloys using
the 105 meter drop tube. Advance in Space Research 8 (1988) 321–330.

3. D. M. Herlach, Containerless undercooling and solidification of pure metals. Annual Review of Materials
Science 21 (1991) 23– 44.

4. E. C. Okress, D. M. Wroughton, G. Comenetz, P. H., Brace and J. C. R. Kelly, Magnetic levitation of solid
and liquid metals. Journal of Applied Physics 23 (1952) 545–552.

5. A. J. Mestel, Magnetic levitation of liquid metals. J. Fluid Mech. 117 (1982) 27–44.
6. A. D. Sneyd and H. K. Moffatt, Fluid dynamics of the levitation melting process. J. Fluid Mech., 117 (1982)

45–70.
7. N. El-Kaddah and J. Szekely, The electromagnetic force field, fluid flow field and temperature profiles in

levitated metal droplets. Metallurgical Transactions 14B (1983) 401–410.
8. G. Lohofer, Theory of an elelctromagnetically levitated metal sphere I: absorbed power. SIAM Journal of

Applied Mathametics 49 (1989) 567–581.
9. J-H Zong, B. Q. Li and J. Szekely, The electrodynamic and hydrodynamic phenomena in magnetically-

levitated droplets, Part I. steady state behavior. Acta Astronautic 26 (1992) 435–449.
10. J-H Zong, B. Q. Li and J. Szekely, The electrodynamic and hydrodynamic phenomena in magnetically-

levitated droplets, Part II. transient behavior and heat transfer Considerations. Acta Astronautic 29 (1993)
305–311.

11. B. Q. Li, The magnetothermal phenomena in electromagnetic levitation processes. International Journal of
Engineering Science 31 (1993) 201–220.

12. B. Q. Li, The fluid flow aspects of electromagnetic levitation processes. International Journal of Engineering
Science 32 (1994) 45–67.

13. B. Q. Li, The transient magnetohydrodynamic phenomena in electromagnetic levitation processes. Interna-
tional Journal of Engineering Science 32 (1994) 1315–1336.

14. J. D. Jackson, Classical Electrodynamics. New York: John Wiley and Sons (1968) 848 pp.
15. W. R. Smythe, Static and Dynamic Electricity. New York: McGraw-Hill (1968) 622 pp.
16. J. A. Straton, Electromagnetic Theory. New York: McGraw- Hill (1941) 615 pp.
17. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids. Oxford: Oxford University Press (1959) 510

pp.
18. E. J. Hinch, Perturbation Methods. Cambridge: Cambridge University Press (1991) 160 pp.
19. P. M. Morse and H. Feshback, Methods of Theoretical Physics. New York: McGraw-Hill (1953) 1978 pp.
20. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. Washington, DC: National Bureau

of Standards (1970) 1045 pp.
21. B. Q. Li and X. Zhang, Perturbation solution of electromagnetic and temperature fields in a deformed sphere

heated by an alternating magnetic field. In: L. S. Fletcher and T. Aihara (eds.), The 4th ASME/JSME Thermal
Engineering Joint Conference. Hawaii: ASME/JSME (1995) 283–293.

22. E. Buktov, Mathematical Physics. Reading: Addison-Wesley (1968) 735 pp.
23. W. Brisley and B. S. Thornton, Electromagnetic levitation calculations for axially symmetric systems. British

Journal of Applied Physics. 14 (1963) 682–686.
24. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, San Diego: Academic Press

(1980) 1160 pp.


